College of Engineering Next      Previous      Contents      Search      UA


Professor Viola L. Acoff, Interim Department Head
Office: A-127-E Bevill Building

The BSChE degree is a professional degree that prepares graduates for employment and graduate study in chemical engineering and related fields, as well as entry into professional programs such as medicine, dentistry, law, and business.

Chemical engineers apply economics, chemistry, biology, physics, and mathematics to the design and operation of processes and to the research and development of new materials, processes, and systems. The many and varied issues associated with going from concept to demonstration to operation of processes and equipment all fall within the province of chemical engineering. Chemical engineers are as comfortable with plant operations, research and development projects, synthesis of alternative fuels, energy conservation and conversion, process design, optimization and control, environmental conservation and pollution prevention, as they are with the exciting fundamental studies associated with biotechnology, nanotechnology, electrochemical technology, and other areas yet to be discovered.

The BSChE degree and curriculum place strong emphasis on the basic sciences, but a vital feature remains the high degree of confidence and practical ability gained from laboratory and design courses. Laboratories include equipment needed to study and demonstrate heat, mass, and momentum transfer; material and energy balances; process dynamics and control; chemical reaction systems including catalysis; and thermodynamics. A full-time technician who is a qualified machinist maintains the laboratories. The Basics Laboratory course covers fundamental principles to reinforce the basic courses within the chemical engineering curriculum. The Unit Operations Laboratory course contains pilot scale process units and other pieces of equipment that allow students to build, operate and analyze results collected during their operation. The Chemical and Biological Engineering High Bay Facility provides state-of-the-art visualization equipment for research and instruction in continuous and batch distillation, and reaction engineering. A high-pressure chemical reaction facility is also available for experimental studies and demonstrations of chemical reactions. Individual faculty member research laboratories give students the opportunity to work one-on-one with faculty in special problems courses.

Design is paramount to an engineering education. It is the salient feature that distinguishes engineering from other professional degree programs. Engineering design is the process of devising a system, component, process, or product to meet desired needs. It is a decision-making process in which the basic sciences, mathematics and engineering sciences are applied to convert resources optimally to meet stated objectives. The Chemical and Biological Engineering Design component of this curriculum includes development of student creativity, use of open-ended problems, development and use of modern design theory and methodology, formulation of design problem statements and specifications, consideration of alternative solutions, feasibility analyses, concurrent engineering design, technical research, and detailed system descriptions. The introduction of realistic constraints, such as economic factors, safety, reliability, aesthetics, ethics, and environmental and social impacts, are used to fully develop each design experience.

Program Objectives

Chemical and biological engineering graduates are expected to

Special Features

While the baccalaureate degree curriculum contains many courses designed to sequentially introduce students to methodologies for understanding, defining, and solving a broad array of increasingly complex problems, there are elements in the program that also allow students to investigate exciting and challenging issues that often exist at the intersections where engineering and the sciences meet. Some of the elective special program options are described below.

Chemical and Biological Engineering Honors Program. In 2002, the departmental faculty members approved a departmental honors program that complements the University-wide honors experiences (CBH, UHP, IHP) found in the Honors College. The feature of this departmental honors program is a one-hour forum that focuses on emerging topics of interest in the field. In addition to this course, 6 hours of departmental honors course credits may be scheduled through the CHE 498/CHE 499 sequence or as other designated courses. These credits may include one-on-one undergraduate research experiences, co-op- or internship-for-credit experiences, work-/study-abroad-for-credit experiences, and courses designed to be taken for joint undergraduate/graduate credit in the Scholars Program leading to advanced degree study. The remaining 5 hours of honors credit may be taken within one of the University-wide honors programs. The chemical engineering honor courses may, in turn be used to satisfy the requirements in the University-wide honor program(s) selected. Special recognition for completing these programs is given at the time of graduation.



Plan of study, certificates, and minors options. Students are required to explore other areas of personal interest through their plan of study. Two courses (6 hours of credit), related in content and/or discipline, must be selected as the two approved elective blocks within the plan of study. This provides students with an option to gain knowledge in a “concentration” area that is defined by the student, in consultation with a faculty advisor. A student may add courses to this area using the advanced science and/or chemical and biological engineering elective courses.

Undergraduate research options. Many students elect to take special problems (undergraduate research) to gain valuable hands-on experience in laboratory or computational settings with a faculty member. These courses may be used to satisfy elective course requirements when they are designed to meet the requirements of those course blocks. Products from this activity often include opportunities for making presentations at local and national meetings, co-authoring technical papers, or travel to meetings, conferences, or symposia. Research papers may also be prepared for publication in technical journals. This kind of activity is particularly helpful to students who wish to pursue advanced study in chemical engineering or related fields.

Scholars Program. This program administered by the University’s Graduate School allows eligible students to prepare for advanced study by enrolling in courses that can concurrently satisfy bachelor of science and master of science (MS) degree requirements. The eligibility requirements may be in the Special Academic Programs section of this catalog.

Premedical/predental/prelaw options. The baccalaureate degree is a popular study plan for preparation to enter one of the professional programs listed. Acceptance rates for our students are excellent and the preparation that an engineering degree provides makes these tracks a most desired one.


First SemesterHours
CH 101 General Chemistry I (N) 4
CHE 125 Introduction to Chemical Engineering1
DR 100 Technical Sketching for Engineers1
EN 101 English Composition I (FC) 3
GES 131 Foundations of Engineering I2
MATH 125 Calculus I (MA) 4
Second Semester
BSC 114 Principles of Biology I (N)3
CH 102 General Chemistry II (N) 4
EN 102 English Composition II (FC) 3
GES 132 Foundations of Engineering II2
MATH 126 Calculus II (MA) 4
First Semester
CH 231 Elementary Organic Chemistry I3
CHE 254 Chemical Engineering Calculations4
MATH 227 Calculus III (MA) 4
PH 105 General Physics with Calculus I (N) 4
Second Semester
CH 232 Elementary Organic Chemistry II 3
CHE 255 Chemical Engineering Thermodynamics (C)4
MATH 238 Applied Differential Equations I (MA) 3
PH 106 General Physics with Calculus II (N) 4
History (HI) or Social
Behavioral Sciences (SB) Elective3
First Semester
CH 237 Organic Chemistry Laboratory I2
CHE 304 Fluid Flow Operations3
CHE 306 Heat Transfer Operations3
CHE 324 Transport Phenomena (C)3
Engineering elective (see advisor)3
History (HI) or social and behavioral sciences (SB) elective*3
Second Semester
CHE 223 Chemical Equilibria and Analyses3
CHE 305 Separation Processes (C)3
CHE 319 Basic Chemical Engineering Laboratory2
CHE 354 Chemical Reactor Design3
History (HI) or social and behavioral sciences (SB) electives*6
CHE 320 Operations Laboratory (W) 5
First Semester
CHE 481 Chemical Process Design I 3
CHE 493 Process Dynamics and Control3
Chemical Engr. Elective (see advisor)3
Humanities (HU), Literature (L), or fine arts (FA) electives6
Second Semester
CHE 482 Chemical Process Design II (W)3
Advanced science elective (see advisor)3
Chemical engineering elective (see advisor)3
Approved elective (see advisor)3
Humanities (HU), literature (L), or fine arts (FA) elective3
Total: 132 hours

*Note: EC 110 is a recommended SB course.
1Some undergraduates may qualify to enroll in 500-level courses.

About the University Next      Previous      Contents      Search      UA